Lattice Reduction for Modular Knapsack

نویسندگان

  • Thomas Plantard
  • Willy Susilo
  • Zhenfei Zhang
چکیده

In this paper, we present a new methodology to adapt any kind of lattice reduction algorithms to deal with the modular knapsack problem. In general, the modular knapsack problem can be solved using a lattice reduction algorithm, when its density is low. The complexity of lattice reduction algorithms to solve those problems is upper-bounded in the function of the lattice dimension and the maximum norm of the input basis. In the case of a low density modular knapsack-type basis, the weight of maximum norm is mainly from its first column. Therefore, by distributing the weight into multiple columns, we are able to reduce the maximum norm of the input basis. Consequently, the upper bound of the time complexity is reduced. To show the advantage of our methodology, we apply our idea over the floating-point LLL (L) algorithm. We bring the complexity from O(dβ + dβ) to O(dβ + dβ) for ε < 1 for the low density knapsack problem, assuming a uniform distribution, where d is the dimension of the lattice, β is the bit length of the maximum norm of knapsack-type basis. We also provide some techniques when dealing with a principal ideal lattice basis, which can be seen as a special case of a low density modular knapsack-type basis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QTRU: quaternionic version of the NTRU public-key cryptosystems

In this paper we will construct a lattice-based public-key cryptosystem using non-commutative quaternion algebra, and since its lattice does not fully fit within Circular and Convolutional Modular Lattice (CCML), we prove it is arguably more secure than the existing lattice-based cryptosystems such as NTRU. As in NTRU, the proposed public-key cryptosystem relies for its inherent securi...

متن کامل

Parameter security characterization of knapsack public-key crypto under quantum computing

Knapsack public-key encryption schemes are based on the knapsack problem, which is NP-complete. Merkle-Hellman knapsack encryption scheme was the first concrete realization of a public-key encryption scheme. As its secure basis is superincreasing knapsack problem, it has been demonstrated to be insecure. Many variations have subsequently been proposed, whose knapsack vector density are less tha...

متن کامل

A Practical Attack against Knapsack based Hash Functions (Extended Abstract)

In this paper, we show that lattice reduction is a very powerful tool to nd collision in knapsack based compression-functions and hash-functions. In particular, it can be used to break the knapsack based hash-function that was introduced by Damgard 3]

متن کامل

Merkle-Hellman Revisited: A Cryptanalysis of the Qu-Vanstone Cryptosystem Based on Group Factorizations

Cryptosystems based on the knapsack problem were among the rst public key systems to be invented and for a while were considered quite promising. Basically all knapsack cryptosystems that have been proposed so far have been broken, mainly by means of lattice reduction techniques. However, a few knapsack-like cryptosystems have withstood cryptanalysis, among which the Chor-Rivest scheme 2] even ...

متن کامل

On the Hardness of Subset Sum Problem from Different Intervals

The subset sum problem, which is often called as the knapsack problem, is known as an NP-hard problem, and there are several cryptosystems based on the problem. Assuming an oracle for shortest vector problem of lattice, the low-density attack algorithm by Lagarias and Odlyzko and its variants solve the subset sum problem efficiently, when the “density” of the given problem is smaller than some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012